十五分钟后。
徐云抵达图书馆。
刷卡过了门禁后,他先是打了杯水,找了个无人的角落坐下。
接着从身上掏出了那张刻录有方程的纸片。
时隔多日。
方程上的内容依旧没变:
4db2=4)22=√=≤1。。。。。。。
k=∑n;
k=[xak,xbk,…,xpk,…∈k。。。。。。。
=k=∑k;
±3):√120)kk≤1±3);
w=ktktkt。。。。。。。。。。。
le=-1=np-s)-1。
这是一个由正则化组合系数和解析延拓组成的复合方程组,解起来非常的麻烦。
当时徐云做出的唯一判断,便是最后一道方程的解一定是个比值。
不过今天有了足够的时间,他便又发现了一个情况。
只见他在方程的第三行和第五行边画了两根线,又打了个问号。
表情若有所思:
“似乎。。。。。。。”
谷邼
“这张纸片的复合方程组,可以分成三个部分计算?”
众所周知。
正则化理论,最早是为解决不适定问题而提出的。
长期以来人们认为,从实际问题归结出的数学问题总是适定的。
早在20世纪初。
hadamard便观察到了一个现象:
在一些很一般的情况下,求解线性方程的问题是不适定的。
即使方程存在唯一解,如果方程的右边发生一个任意小的扰动,都会导致方程的解有一个很大的变化。
在这种情况下。
如果最小化方程两边之差的一个范函,并不能获得方程的一个近似解。
到了20世纪60年代。
tikhonov,ivanov和phillips又发现了最小化误差范函的加正则项。
即正则化的范函,而不是仅仅最小化误差范函,就能得到一个不适定的解题的解序列趋向于正确解。
换而言之。
第一部分的方程组,其实是一个描述渐变区域的序列集合。
甚至可能是。。。。。。
图像?
想到这里。
徐云顿时来了兴趣。