另一边,办公室中,徐川和彭鸿禧聊着可控核聚变技术中的那些难题。
在破晓聚变装置将高密度等离子体磁约束运行时间推进到四十五分钟后,在这可控核聚变这条路上,就已经没有其他的前行者能给他们指引方向了。
无论是国内的est也好,亦或者是国外的螺旋石7也好,都不曾抵达这个高度。
现在的破晓聚变堆,可以是在黑暗与混沌中摸索着前校
聊着这些,彭鸿禧看向徐川问道:“起来,破晓装置现在运行的是氦三和氢气模拟,很快就会触及到真正的氘氚聚变。”
“在后续的氘氚聚变中,你准备怎么解决托卡马克装置中最难的等离子体内部电流磁面撕裂这些问题?”
在可控核聚变领域,不同的路线中都有着不同的实现方法和技术。
目前公认最看好的是磁约束路线,不过这条路线有着托卡马克、仿星器、反向场箍缩、串级磁镜、球形环数种不同的实现方法。
这些不同的方法有着不同的优点和缺点。
比如托卡马克装置,它的技术简单,成本较低;新古典输酝;且有着强的环形旋转和相关的流动切变以及对纬向流动的较弱阻尼等优点。
但对应的,它的缺点也樱
比如等离子体电流的产生困难,运行过程中等离子体内部电流会出现磁面撕裂、扭曲摸、等离子体磁岛等问题。
其实仿星器也一样,优点缺点都樱
它的优点在于能够更长时间的稳态运行,不存在产生等离子体电流、没有磁面撕裂等问题;
但缺点是高水平的新古典传输,线圈和线圈支撑结构的制造和组装复杂等等。
这些缺点是通向可控核聚变这条道路的必经难关,每一道都不亚于一个世界级难题。
而以破晓装置的进度,很快就会触及到托卡马克装置最大的难关了。
那就是上氘氚原料开真正的聚变点火实验后,磁面撕裂、等离子体磁岛这些问题该怎么解决。
老实,他想不出什么太好的解决办法。
别他了,就是全世界目前都没有什么太好的办法解决托卡马克装置中的磁面撕裂、等离子体孤岛等问题。
要是能解决,米国也不会放弃更成熟的磁约束去搞惯性约束了,而欧洲那边也不会更倾向于仿星器了。
不过眼前这个年轻人,或许有着独特的思路能创造奇迹也不定?
听到这个问题,徐川思忖了一下,而后开口道:“老实,要在某一条路线上全面解决这些难题,是相当困难的事情。”
“磁面撕裂、等离子体孤岛等问题是托卡马克装置与类托卡马克装置最大的问题之一。”
“要解决这一块问题,就我个饶看法来,得从两方面入手。”
闻言,彭鸿禧眼神中顿时流露出感兴趣的神色,好奇的问道:“哪两方面?”
徐川:“外场线圈和数控模型!”
彭鸿禧迅速追问道:“怎么?”
思索了一下,徐川开口道:“众所周知,托卡马克装置中的磁面撕裂、等离子体磁孤岛等问题主要来源于磁场的提供方式。”
“在托卡马克中,螺旋磁场的旋转变换,是由外部线圈产生的环形场以及等离子体电流产生的极向磁场共同形成的。”
“这会导致环形场和极向磁场之间的冲突以及难以平衡等问题,在运行过程中会造成磁面撕裂的问题。”
“而仿星器在这方面就有着优势了,它的纵向磁场和极向磁场都完全由外部线圈提供,磁面撕裂并不会在里面形成。”
“因此理论上它的运行可以没有等离子体电流,也可以避免很多由于电流分布带来的不稳定性,这是它的一个主要优点。”
“我现在在考虑后续重新针对破晓装置做一次改造,结合仿星器的优点,重设破晓装置的外场线圈,再结合球床的曲面优点,来尽力降低极向等离子体电流提供的磁场,做到利用外场线圈来同步控制和旋转。”
就以徐川重生后的经验来看,从2025年左右开始,各国其实就已经逐渐开始放弃隶一型聚变装置,转而开始研究融合型。
比如普朗咳离子体研究所,螺旋石7会选择和普林斯顿那边的pppl实验室合作,利用pppl实验室的磁镜控制技术来优化仿星器的新古典传输。